/*#define DEBUG /**************** WARNING ************************************************ * * CURRENT EXPORT LAWS CONTROL THE EXPORT OF THE DES * ALGORITHM OUTSIDE OF THE UNITED STATES. * If you are outside of the United States, then you do not have * the legal right to export/download/view this program. * ************************************************************************/ /* * Behavioral model for the DEStiny chip * * DEStiny is an implementation of the crypt() algorithm of DES encryption * It is being created as a project for CS755 by Zhenyu Liu and David Ljung * * Code written by David Ljung, 3/25/94 * * Tables were taken from simple_crypt.c by Michael Glad ([email protected]) * (Copyright 1992 under GNU Public License) * * I used integer tables for bits instead of a more packed representation * for the sake of clarity, and to be more analogous to a VLSI representation * */ /* Includes */ #include#include #include /* for crypt(), for final comparison */ /* Tables */ /* Expansion table (32 to 48) */ int E_p[48]= { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9,10,11,12,13,12,13,14,15,16,17, 16,17,18,19,20,21,20,21,22,23,24,25, 24,25,26,27,28,29,28,29,30,31,32, 1 }; /* Permutation Choice 1 for subkey generation (64/56 to 56) */ int PC1_p[56]= { 57,49,41,33,25,17, 9, 1,58,50,42,34,26,18, 10, 2,59,51,43,35,27,19,11, 3,60,52,44,36, 63,55,47,39,31,23,15, 7,62,54,46,38,30,22, 14, 6,61,53,45,37,29,21,13, 5,28,20,12, 4 }; /* Permutation Choice 2 for subkey generation (56 to 48) */ int PC2_p[56]= { 14,17,11,24, 1, 5, 3,28,15, 6,21,10, 23,19,12, 4,26, 8,16, 7,27,20,13, 2, 41,52,31,37,47,55,30,40,51,45,33,48, 44,49,39,56,34,53,46,42,50,36,29,32 }; /* Number of rotations for the iteration of key scheduling */ /* The concept of a table here doesn't fit our behavioral model */ /* This will be logic in our final design */ int keyrots[16]= {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1}; /* Selection blocks * There are 8 sblocks, each of which is referenced by a 2 bit value * which picks the row, and a 4 bit value which picks the column * This number is then the 4 bit output for that select block */ int sblocks[8][4][16]= { { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } }, { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } }, { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } }, { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } }, { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } }, { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } }, { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } }, { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } } }; /* Permutation P for after sblocks */ int P_p[32] = { 16, 7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10, 2, 8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25 }; /* Inverse permutation of IP for end * Temporary - the true behavior will be implemented in a shift out register * (Look at the pattern obvious in an 8x8 layout) */ int IPinv_p[64] = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; /* Code */ /* header * Print out a header for print_bits * For debugging/testing */ header(amt) int amt; { int i; if(amt/10>0) { for(i=1;i<=amt;i++) if(i/10>0 && i/10*10==i) printf("%d",i/10); else printf(" "); printf("\n"); } for(i=1;i<=amt;i++) fprintf(stdout,"%d",i-i/10*10); fprintf(stdout,"\n"); } /* print_bits * Prints out the bits of a string in binary format */ print_bits(s,amt) int *s,amt; { int i; for(i=0;i =0;amt--) out[amt]=in[by[amt]-1]; } /* do_sblocks * Convert the 48 bit value into 32 bits with the selection blocks */ do_sblocks(in,out) int *in,*out; { int i,j,val; for(i=0;i<8;i++) { val=sblocks[i] [ in[i*6]<<1 | in[i*6+5] ] [ in[i*6+1]<<3 | in[i*6+2]<<2 |in[i*6+3]<<1 |in[i*6+4] ]; out[i*4]=val>>3&1; out[i*4+1]=val>>2&1; out[i*4+2]=val>>1&1; out[i*4+3]=val&1; } /* printf("Before SB: "); pr_bits(in,48); printf("After SB: "); pr_bits(out,32); */ } /* load_salt * load the salt mask with the salt bits * * We either need to figure out a good VLSI implementation of ascii_to_bin * or else just take the salt as the converted 12 bits and not 2 chars * hmm.. we also need bin_to_ascii - for output */ #define ascii_to_bin(c) (c>='a'?(c-59):c>='A'?(c-53):c-'.') #define bin_to_ascii(c) (c>=38?(c-38+'a'):c>=12?(c-12+'A'):c+'.') load_salt(saltmask,salt) int *saltmask; char *salt; { int tot,i; tot=ascii_to_bin(salt[0]) | (ascii_to_bin(salt[1])<<6); for(i=0;i<12;i++) saltmask[i]=tot>>i&1; #ifdef DEBUG printf("Salt mask: "); print_bits(saltmask,12); #endif } /* salt * the salting function * switch bits according to salt */ do_salt(bits,saltmask) int *bits,*saltmask; { int i,t; for(i=0;i<12;i++) if(saltmask[i]) { t=bits[i]; bits[i]=bits[24+i]; bits[24+i]=t; } } /* load the intermediate key with the password bits permuted by PC1 * * bit 1 is MSB of first char */ load_key(ikey,password) int *ikey; char *password; { int i,j; int tmp[64]; for(i=0;i<8;i++) for(j=0;j<8;j++) tmp[i*8+j]=(password[i]>>(6-j)) &1; permute(PC1_p,56,tmp,ikey); /* #ifdef DEBUG */ printf("Password bits: "); pr_bits(tmp,64); if(0) for(i=0;i<=56;i+=8) print_bits(tmp+i,7); printf("Loaded (after PC 1): "); pr_bits(ikey,56); /* #endif */ } /* generate a subkey for iteration: iter * the subkey is kept in the same memory space, so * subsequent calls will be destructive to the last subkey. * This also means that subkey() counts on the memory space being unchanged. * This call will change the intermediate key (by a rotate) * * (It would be more efficient to generate the 16 subkeys at * once and save them, but this should be close to the behavior * of the chip, which will generate in parallel to the function) */ int *subkey(ikey,iter) int *ikey,iter; { static int sub[48]; int rots,i,tmp0l,tmp1l,tmp0r,tmp1r; rots=keyrots[iter]; /* number of rotates - 1 or 2 */ tmp0l=ikey[0]; tmp1l=ikey[1]; tmp0r=ikey[28]; tmp1r=ikey[29]; for(i=0;i<28-rots;i++) { ikey[i]=ikey[i+rots]; ikey[28+i]=ikey[28+i+rots]; } if(rots==2) { ikey[26]=tmp0l; ikey[27]=tmp1l; ikey[54]=tmp0r; ikey[55]=tmp1r; } else { ikey[27]=tmp0l; ikey[55]=tmp0r; } /* printf("Key[%2.2d]: ",iter+1); pr_bits(ikey,56); */ permute(PC2_p,48,ikey, sub); /* printf("subKey[%2.2d]: ",iter+1); pr_bits(sub,48); */ return sub; } /* xor * src1 <- src1 xor src2 */ xor(src1,src2,num) int *src1,*src2,num; { int i; for(i=0;i \n\ password is a string up to 8 characters\n\ salt is two characters\n\ ",name); exit(-1); } /* main * * This is all just behavioral model interface */ main(argc,argv) int argc; char **argv; { char password[9]; char salt[3]; char *answer; if(argc!=3) usage(argv[0]); if(argv[2][0]=='\0' || argv[2][1]=='\0') usage(argv[0]); strcpy(password,"\0\0\0\0\0\0\0\0\0"); strncpy(password,argv[1],8); salt[0]=argv[2][0]; salt[1]=argv[2][1]; salt[2]='\0'; fprintf(stdout,"Encrypting [%s] with salt [%s]\n",password,salt); answer=mycrypt(password,salt); fprintf(stdout,"Comparison:\n" "UNIX crypt() Behavioral Model\n" "[%s] [%s]\n", crypt(password,salt),answer); fprintf(stdout,"\nDone.\n"); exit(0); }