/*#define DEBUG

/**************** WARNING ************************************************
 *
 * CURRENT EXPORT LAWS CONTROL THE EXPORT OF THE DES
 * ALGORITHM OUTSIDE OF THE UNITED STATES.
 * If you are outside of the United States, then you do not have
 * the legal right to export/download/view this program.
 *
 ************************************************************************/




/*
 * Behavioral model for the DEStiny chip
 *
 * DEStiny is an implementation of the crypt() algorithm of DES encryption
 * It is being created as a project for CS755 by Zhenyu Liu and David Ljung
 *
 * Code written by David Ljung, 3/25/94
 *
 * Tables were taken from simple_crypt.c by Michael Glad ([email protected])
 * (Copyright 1992 under GNU Public License)
 *
 * I used integer tables for bits instead of a more packed representation
 * for the sake of clarity, and to be more analogous to a VLSI representation
 *
 */

/* Includes
 */
#include 
#include 
#include   /* for crypt(), for final comparison */

/* Tables
 */

/* Expansion table (32 to 48) */
int E_p[48]=
     { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
        8, 9,10,11,12,13,12,13,14,15,16,17,
       16,17,18,19,20,21,20,21,22,23,24,25,
       24,25,26,27,28,29,28,29,30,31,32, 1 };

/* Permutation Choice 1 for subkey generation (64/56 to 56) */
int PC1_p[56]=
     { 57,49,41,33,25,17, 9, 1,58,50,42,34,26,18,
       10, 2,59,51,43,35,27,19,11, 3,60,52,44,36,
       63,55,47,39,31,23,15, 7,62,54,46,38,30,22,
       14, 6,61,53,45,37,29,21,13, 5,28,20,12, 4 };

/* Permutation Choice 2 for subkey generation (56 to 48) */
int PC2_p[56]=
     { 14,17,11,24, 1, 5, 3,28,15, 6,21,10,
       23,19,12, 4,26, 8,16, 7,27,20,13, 2,
       41,52,31,37,47,55,30,40,51,45,33,48,
       44,49,39,56,34,53,46,42,50,36,29,32 };

/* Number of rotations for the iteration of key scheduling */
/* The concept of a table here doesn't fit our behavioral model */
/* This will be logic in our final design */
int keyrots[16]= {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};

/* Selection blocks
 * There are 8 sblocks, each of which is referenced by a 2 bit value
 * which picks the row, and a 4 bit value which picks the column
 * This number is then the 4 bit output for that select block
 */
int sblocks[8][4][16]=
      { { { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },
          {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },
          {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },
          { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }
        },

        { { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },
          {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },
          {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },
          { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }
        },

        { { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },
          { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },
          { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },
          {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }
        },

        { {  7,  13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },
          { 13,  8,  11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },
          { 10,  6,   9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },
          {  3, 15,   0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }
        },

        { {  2, 12,   4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },
          { 14, 11,   2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },
          {  4,  2,    1, 11, 10, 13,  7,  8, 15, 9, 12,  5,  6,  3,  0, 14 },
          { 11,  8,  12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }
        },

        { { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },
          { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },
          {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },
          {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }
        },

        { {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },
          { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },
          {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },
          {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }
        },

        { { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },
          {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },
          {  7, 11, 4,   1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },
          {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
        }
      };

/* Permutation P for after sblocks */
int P_p[32] =
     { 16, 7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
        2, 8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25 };

/* Inverse permutation of IP for end
 * Temporary - the true behavior will be implemented in a shift out register
 * (Look at the pattern obvious in an 8x8 layout)
 */
int IPinv_p[64] =
  { 40,  8, 48, 16, 56, 24, 64, 32,
    39,  7, 47, 15, 55, 23, 63, 31,
    38,  6, 46, 14, 54, 22, 62, 30,
    37,  5, 45, 13, 53, 21, 61, 29,
    36,  4, 44, 12, 52, 20, 60, 28,
    35,  3, 43, 11, 51, 19, 59, 27,
    34,  2, 42, 10, 50, 18, 58, 26,
    33,  1, 41,  9, 49, 17, 57, 25 };


/* Code
 */

/* header
 * Print out a header for print_bits
 * For debugging/testing
 */
header(amt)
  int amt;
{
  int i;
  if(amt/10>0) {
    for(i=1;i<=amt;i++) 
      if(i/10>0 && i/10*10==i) printf("%d",i/10);
      else printf(" ");
    printf("\n");
  }
  for(i=1;i<=amt;i++) fprintf(stdout,"%d",i-i/10*10);
  fprintf(stdout,"\n");
}

/* print_bits
 * Prints out the bits of a string in binary format
 */
print_bits(s,amt)
  int *s,amt;
{
  int i;

  for(i=0;i=0;amt--)
    out[amt]=in[by[amt]-1];
}

/* do_sblocks
 * Convert the 48 bit value into 32 bits with the selection blocks
 */
do_sblocks(in,out)
  int *in,*out;
{
  int i,j,val;

  for(i=0;i<8;i++) {
    val=sblocks[i] [ in[i*6]<<1 | in[i*6+5] ]
                   [ in[i*6+1]<<3 | in[i*6+2]<<2 |in[i*6+3]<<1 |in[i*6+4] ];
    out[i*4]=val>>3&1;
    out[i*4+1]=val>>2&1;
    out[i*4+2]=val>>1&1;
    out[i*4+3]=val&1;
  }
/*
printf("Before SB: "); pr_bits(in,48);
printf("After SB:  "); pr_bits(out,32);
*/
}

/* load_salt
 * load the salt mask with the salt bits
 *
 * We either need to figure out a good VLSI implementation of ascii_to_bin
 * or else just take the salt as the converted 12 bits and not 2 chars
 * hmm..  we also need bin_to_ascii - for output
 */
#define ascii_to_bin(c) (c>='a'?(c-59):c>='A'?(c-53):c-'.')
#define bin_to_ascii(c) (c>=38?(c-38+'a'):c>=12?(c-12+'A'):c+'.')

load_salt(saltmask,salt)
  int *saltmask;
  char *salt;
{
  int tot,i;

  tot=ascii_to_bin(salt[0]) | (ascii_to_bin(salt[1])<<6);

  for(i=0;i<12;i++)
    saltmask[i]=tot>>i&1;

#ifdef DEBUG
printf("Salt mask: "); print_bits(saltmask,12);
#endif
}

/* salt
 * the salting function
 * switch bits according to salt
 */
do_salt(bits,saltmask)
  int *bits,*saltmask;
{
  int i,t;

  for(i=0;i<12;i++)
    if(saltmask[i]) {
      t=bits[i];
      bits[i]=bits[24+i];
      bits[24+i]=t;
    }
}

/* load the intermediate key with the password bits permuted by PC1
 *
 * bit 1 is MSB of first char
 */
load_key(ikey,password)
  int *ikey;
  char *password;
{
  int i,j;
  int tmp[64];

  for(i=0;i<8;i++)
    for(j=0;j<8;j++)
      tmp[i*8+j]=(password[i]>>(6-j)) &1;

  permute(PC1_p,56,tmp,ikey);

/*
#ifdef DEBUG
*/
  printf("Password bits: "); pr_bits(tmp,64);
if(0) for(i=0;i<=56;i+=8) print_bits(tmp+i,7);
  
  printf("Loaded (after PC 1): "); pr_bits(ikey,56);
/*
#endif
*/
}

/* generate a subkey for iteration: iter
 * the subkey is kept in the same memory space, so
 * subsequent calls will be destructive to the last subkey.
 * This also means that subkey() counts on the memory space being unchanged.
 * This call will change the intermediate key (by a rotate)
 *
 * (It would be more efficient to generate the 16 subkeys at
 *  once and save them, but this should be close to the behavior
 *  of the chip, which will generate in parallel to the function)
 */
int *subkey(ikey,iter)
  int *ikey,iter;
{
  static int sub[48];
  int rots,i,tmp0l,tmp1l,tmp0r,tmp1r;

  rots=keyrots[iter];  /* number of rotates - 1 or 2 */

  tmp0l=ikey[0];
  tmp1l=ikey[1];
  tmp0r=ikey[28];
  tmp1r=ikey[29];
  for(i=0;i<28-rots;i++) {
    ikey[i]=ikey[i+rots];
    ikey[28+i]=ikey[28+i+rots];
  }
  if(rots==2) {
    ikey[26]=tmp0l;
    ikey[27]=tmp1l;
    ikey[54]=tmp0r;
    ikey[55]=tmp1r;
  } else {
    ikey[27]=tmp0l;
    ikey[55]=tmp0r;
  }

/* printf("Key[%2.2d]: ",iter+1); pr_bits(ikey,56); */

  permute(PC2_p,48,ikey, sub);

/* printf("subKey[%2.2d]: ",iter+1); pr_bits(sub,48); */

  return sub;
}


/* xor
 * src1 <- src1 xor src2
 */
xor(src1,src2,num)
  int *src1,*src2,num;
{
  int i;

  for(i=0;i \n\
       password is a string up to 8 characters\n\
       salt is two characters\n\
",name);
  exit(-1); 
}

/* main
 *
 * This is all just behavioral model interface
 */
main(argc,argv)
  int argc;
  char **argv;
{
  char password[9];
  char salt[3];
  char *answer;

  if(argc!=3) usage(argv[0]);
  if(argv[2][0]=='\0' || argv[2][1]=='\0') usage(argv[0]);
  strcpy(password,"\0\0\0\0\0\0\0\0\0");
  strncpy(password,argv[1],8);
  salt[0]=argv[2][0];  salt[1]=argv[2][1];  salt[2]='\0';
  fprintf(stdout,"Encrypting [%s] with salt [%s]\n",password,salt);
  answer=mycrypt(password,salt);
  fprintf(stdout,"Comparison:\n"
                 "UNIX crypt()         Behavioral Model\n"
                 "[%s]      [%s]\n",
                 crypt(password,salt),answer);
  fprintf(stdout,"\nDone.\n");
  exit(0);
}

Back to the DEStiny page
Back to DaveSource.com